星空体育官网登录入口_爱游戏体育在线登录网页版

你所不知道的14TSI工艺

爱游戏体育在线登录网页版

你所不知道的14TSI工艺

时间: 2024-07-28 17:09:18

  你知道1.4TSI发动机可以在低温状态下的使用分层燃烧实现高压分层启动吗?你知道1.4TSI发动机的进气系统同样具有可变气门正时技术吗?你知道1.4TSI发动机的涡轮增压拥有一套独立的冷却系统吗?经过了1.4TSI发动机的全程拆解,让我们也发掘出TSI发动机内部,在技术、工艺上许多并不为人所知的优势和特点。下面,我们就为大家揭秘那些你所不知道的1.4TSI。

  前期我们已有了关于1.4TSI发动机的解析文章,你们可以点击下面链接阅读:

  通过电机带动的冷却液循环泵是大众这款EA111系列1.4TSI发动机的一大特色,这个泵通过螺栓固定在缸体上,安装在进气歧管下面,是独立冷却系统的核心部分。它根据负荷来操作控制,将冷却液通过前端的泵口从附加散热器中吸出,泵入进气歧管内的冷却器和另一侧的涡轮增压器。

  这套冷却液循环泵会在不同发动机工况下,由行车电脑控制进行智能的工作,它在下面几种情况下会被开启:

  4、两个增压空气温度传感器(分别位于进气歧管的冷却器前后)之间的温差小于 8°C

  6、关掉发动机后,根据迈普图*决定从0至480s之间的上班时间,避免涡轮增压器过热而产生故障(*迈普图存于电脑程序中,是根据发动机的进气温度、压力和其他工况来确定循环泵工作延时的一个三维函数)

  采用独立电机带动水泵的冷却系统优势显而易见,由于并不直接通过曲轴的动力进行工作,发动机在长时间高速行驶后,车主如果直接熄火,这套独立的冷却液循环泵仍会会自动继续工作一段时间,消除了涡轮增压器因过热产生的故障隐患。另外,在发动机没有大负荷运作时,这套系统也会依据情况停止工作,达到节能的目的。

  独立循环中,冷却液经循环泵流过位于进气歧管内的冷却器,这个冷却器的作用是为增压后的空气进行散热,这也是这台1.4TSI发动机的特别设计之一。

  我们知道,气体在被压缩的时候温度会上升,比如打气筒在打气的时候底部会发热。经过涡轮增压器的空气与之类似,气体受到压缩,再加上经过高温涡轮时的部分热传导作用,增压后的空气温度会很高。高温气体由于受热而膨胀,因此有必要对增压后的空气进行冷却,以提高单位体积空气中的氧气“浓度”,进而提高燃烧效率。

  虽然水冷是十分理想的散热的方式,但并没有在增压空气冷却中得到十分普遍采用,因为这种结构不但对密封性要求比较高,还要增加特别设计的循环水冷却系统,对成本和技术都有要求,因此很多厂商的发动机通过机舱前的中冷器进行风冷,其弊端是增加了更大的体积和重量。而EA111的1.4TSI发动机通过上面提到的独立电机冷却液循环泵和冷却器的精巧设计,较为理想的解决了这一问题。

  为压缩空气进行冷却的冷却器由许多铝叶片组成,在里面有冷却液流过的管路。热空气流过铝制叶片,将热量传导给在内部循环的冷却液,然后冷却液再被泵入车辆进气口前端的散热器来冷却。经过冷却后的增压空气,压力值在最高可达1.8bar的条件下,气体温度仅比空气温度高20-25°C,冷却效果很好。

  虽然原理看似简单,但由于冷却器联通着进气歧管,是增压空气的必经之路,所以对密封性能要求比较高。大众这款1.4TSI发动机的冷却器采用了波兰制造的进口件,在冷却器的后部有一个密封条,这个密封条保证冷却器和进气歧管之间的密封,同时为冷却器提供支撑;同样在冷却器和进气歧管的接合部分也有类似的密封条,再通过6个螺栓将冷却器固定镶嵌在进气歧管内,达到了很好的密封效果。

  3、相对独立的冷却液循环系统在温度传感器的监控下工作,冷却液循环泵能够最终靠有必要进行合理的控制。

  通过拆解图我们大家可以看到,这款发动机的涡轮增压器和排气管采用了集成式的设计,这样做的最大优点是省去了多余零件的体积和重量,而更少的零件也使得这套系统故障率更低,更稳定可靠。同时据介绍,1.4TSI这款发动机的涡轮增压器是免维护的,不存在涡轮增压器的保养成本高的问题,而且这套系统与发动机的寿命相同,也不需要按照里程进行更换。

  1.4TSI发动机也具有“进气系统”可变气门正时技术:【点击阅读相关内容】

  “大众的TSI系列发动机都应用了VVT可变气门正时技术。”一汽-大众工程师在就正时系统来进行讲解时表示。而本次拆解的EA111系列1.4TSI发动机,同样也不例外,也在发动机进气系统上采用了该项技术。

  1.4TSI可变气门正时系统主要由ECU(电子控制单元)、叶片槽式调节器、凸轮轴调整电磁阀以及传感器等部分组成。

  1.4TSI具有的VVT叶片槽式调节器由外壳体、内部叶片转子以及位于叶片转子内部的锁销组成。其中,外壳体与外部的正时齿轮固定,实现曲轴通过链条传动驱动进气凸轮轴的功用;而位于壳体内部的叶片则直接与进气门凸轮轴固定,并与之一同旋转,通过带动凸轮轴与壳体产生相对的转动位移,来实现凸轮轴的进气相位改变;而锁销的主要功用,则用于外壳与叶片的连接,实现进气相位的固定,防止凸轮轴复位。

  不同于EA113机型的凸轮轴采用了整体式铸造方式和铸铁材质,1.4TSI引擎无论在凸轮轴的制造工艺以及材料选用上,都具有了显著的改进。

  特点鲜明的装配式制造工艺,将1.4TSI凸轮轴的凸轮与主轴颈实现了分离加工,其中,加工完成的凸轮内壁具有攻丝后的螺纹,而钢管外壁则具有花键预装,装配时,采用“外凸轮加热,内主轴颈冷却”的热套法完成,恢复常温后,依靠匹配的螺纹和花键实现紧固,而工艺方法不但可以消除装配的过盈应力,同时能在短暂时间内完成联接,并在轴向尺寸和角度位置方面保持很高的精度。

  而正是得益于装配式凸轮轴更为简易的制造工艺,在凸轮轴的材质上,1.4TSI也实现了质量更轻的“钢材”选用。而针对1.4TSI采用了强度更高的钢制凸轮轴,大众还做出了“空心轴”的相应改进,大幅度减轻了凸轮轴的重量,减小了其运动惯性,为提升进排气效率奠定了良好的基础。

  相信熟悉捷达的朋友,对于其1.6 RSH发动机一定不会陌生,其中,RSH实为德语Rollen Schlepphebel的缩写,代表的含义正是“滚子摇臂”技术,而这项隶属于气门总成,并用于实现凸轮轴间接驱动进排气门的装置,则同样应用于我们此次拆解的1.4TSI引擎之上,而除却大众以外,该项技术也被其他汽车厂商普遍的应用,凭借的便是其颇为先进的技术特点。

  滚子摇臂由一个具有杠杆作用的钢板型材和一个带有滚珠轴承的凸轮滚柱组成,其一端被固定在液压挺柱之上,一端则定位于气门之上,当凸轮轴通过“滚子”对摇臂施加作用力后,由摇臂完成对进、排气门的驱动。

  而由于凸轮轴不再直接顶压气门杆顶端,加之其采用的液压技术,既可消除凸轮与摇臂之间的间隙,又能通过飞溅油液对凸轮与摇臂接触的部位加以润滑,因此某些特定的程度上减少了配气机构的摩擦损失,并使发动机噪声降低,同时减小了运动惯量,使驱动凸轮轴消耗的发动机功率减少,运行更加平稳、经济。

  针对发动机工况的差异,进气系统的相应变化,对于燃烧室混合气体的形成有着至关重要的作用。而早期的TSI引擎由于均具有分层燃烧技术,因此,根据发动机工况,为满足“分层充气模式——均质稀混合气模式——均质混合气模式”多种不同燃烧室充气模式,“进气歧管翻板”的加入则应运而生。

  在发动机处于低速工况,采用分层充气模式下,进气歧管翻板通过“关闭下进气通道,形成较窄的横截面积”,增加气流流速,有效形成强烈的进气涡流,利于“分层”模式下混合气的形成与雾化,可提高燃烧效率,进而增大发动机扭矩输出;而当发动机进入高速工况,采用均质混合气模式时,进气歧管翻板通过“开启下进气通道,形成较宽的横截面积”,增大进气量,使更多的空气参与燃烧,从而提升发动机的输出功率。

  不过,随着“分层燃烧”技术逐渐在TSI引擎上的淡出,“均质充气”成为了目前该系列引擎的主流充气模式,而1.4TSI同样由于均质燃烧控制的改进,取消了进气歧管翻板的设计,不过,为了同样可以在一定程度上完成油气的充分混合,保证汽缸内形成很好的涡流,1.4TSI则在进气道上作出了相应的改进。

  1.4TSI进气道的角度被调整至更接近水平,同时,在进气道外缘的气门座上,设计了一个倾斜的凸峰,来保证进气吹过气门顶时,在汽缸内形成特殊的涡流,无论在发动机的任何工况下,都可以在一定程度上完成燃气充分混合的作用。而在1.4TSI发动机中,实现“小截面,流速增”、“大截面,流量增”的进气效果元件,则成为了节流阀体(节气门)的主要角色,通过“源头”的进气效果控制,辅以上述特殊的进气道“扰流”效果,从而完成1.4TSI充分提升燃烧效率的职责。

  在欧洲,最早推出的TSI发动机是拥有分层燃烧和缸内直喷两项技术的,而引进国内版本的TSI发动机只保留了缸内直喷技术,在正常工况下取消了分层燃烧技术,这也被很多网友质疑为减配。不过在事实上,除了欧洲市场,大众TSI发动机在全世界内都没用分层燃烧技术,那么这一项 “减配”到底原因何在?

  首先,我们一定要先了解一下到底什么是分层燃烧。我们都知道,气缸内混合气一定要达到一定的空燃比后,才有机会被点燃,而能够让缸内混合气在浓度在低于空燃比时依旧被点燃的技术则被称为稀薄燃烧。我们文中提及的分层燃烧便是实现稀薄燃烧目的的手段之一,它能够使发动机在低负荷时的燃烧效率得到大幅度的提升,从而拥有更低的油耗。

  我们再来了解一下TSI发动机的分层燃烧技术具体工作原理。首先,发动机在吸气行程活塞到达下止点时,ECU控制喷油嘴先进行一次小量的喷油,使气缸内形成稀薄混合气,而在活塞压缩到上止点时再进行第二次喷油,利用活塞顶的特殊结构让火花塞附近出现混合气相对浓度较高的区域,然后利用这部分较浓的混合气引燃汽缸内的稀薄混合气,以此来实现气缸内的稀薄燃烧,这就可以用更少的燃油达到同样的燃烧效果,使得发动机的油耗更低。

  分层燃烧的确可以越来越好的提高低负荷工况下的燃烧效率,但是它也有一个较难克服的问题。在分层燃烧的过程中,由于气缸内混合气的空燃比很低,使气缸内的空气大大超过了维持汽缸内燃油燃烧所需要的量。在气缸内高温度高压力的环境下,在未参与反应空气中,氧气和氮气就很容易发生化学反应,产生大量的氮氧化物。而为了对付这些氮氧化物,则必须对现行的三元催化器装置做全面升级,才可以做到尾气排放的标准。升级尾气处理系统不仅需要较昂贵的成本,而且使用分层燃烧技术之后对燃油质量发展要求也更高,会导致消费者使用成本增加。

  另外,实际应用中,分层燃烧只是在低转速、低负荷工况下使用,节油作用有限,相对于升级三元催化和使用高标号燃油所产生的成本,分层燃烧技术所节省的燃油并不划算。大众在对制造成本和消费的人的使用成本进行一番权衡之后,决定在全世界内取消分层燃烧技术,只保留了缸内直喷均质燃烧技术。所以,没用分层燃烧技术的中国市场其实并没有受到不公平待遇,因为大众在在全世界都已不会再使用分层燃烧技术。欧洲市场也只有少部分发动机保留了分层燃烧技术。

  所谓的取消了分层燃烧是指在绝大部分情况下,发动机只使用均质燃烧,但不表示它不可以进行分层燃烧。比如在东北地区,天气气温降到零下30度以下时,点火启动就会变得很难,此时TSI发动机通过调整喷油程序,使用分层燃烧(高压分层启动)来保证点火的一次成功。

  TSI发动机的供油系统经过改进之后,可以在很短的时间(0.5S)内建立起60bar的压力,因此不需要热车,就能轻松实现在低温条件下的高压分层启动,利用分层燃烧技术启动发动机不仅能提高低温天气下冷启动的成功率,还有利于降低油耗和排放。

  1.4TSI发动机的气缸壁还采用了一种在发动机已经普遍的使用的平台网纹珩磨技术。所谓平台网纹珩磨,是通过珩磨在气缸壁表明产生细小的沟槽,这些沟槽有规律地排列形成网纹,并由专门的珩磨工艺削掉沟槽的尖峰,形成微小的平台。平台网纹珩磨在缸孔表明产生的这种特殊结构有如下优点:

  1.微小的平台增加了接触面积,削掉尖峰,消除了气缸壁表面的早期快速磨损,提高了表面的耐磨性。

  2.细小的沟痕形成良好的储油空间,并在气缸壁表明产生良好的油膜,降低了气缸壁表面与活塞及活塞环的摩擦,因而能够正常的使用低摩擦力的活塞环。 而且机油储存在细小的沟痕中能有效减小散失量,进而降低了机油消耗。

  3.珩磨后在气缸壁表明产生了无数微小的平台,增加了缸壁与活塞及活塞环的接触面积,加大了缸壁表面的支撑度,减少了缸孔的初期磨损,因此减少了磨合时间,甚至于不用磨合。

  此前网上曾有一个流传比较广的一种说法:大众TSI发动机的气缸壁网纹珩磨的加工工艺会造成机油的过度消耗。但从平台网纹珩磨技术的特点来看,它虽然有利于在气缸壁形成油膜,但并不是造成机油消耗过多的原因,机油储存在细小的沟痕中反而可以轻松又有效的减小缸内机油的散失量。此外,这种平台网纹珩磨技术并不是TSI发动机的特有技术,它在发动机领域已得到了很广泛的应用,很多同样使用了网纹珩磨技术的发动机并不存烧机油的问题,因此用它来解释TSI发动机烧机油并不严谨。

  1.4TSI发动机使用的双循环冷却系统采用双节温器控制,对于通过缸体和缸盖的不一样的温度的冷却水产生一个分开的冷却水导向,分别对缸体和缸盖进行大小循环控制。冷启动时只在缸体内开启小循环,使得缸体快速加热,高的缸体温度有利于减小曲柄连杆机构的摩擦,降低驱动磨损,同时缸盖的大循环并不可能会受到干涉,因此冷却性能更好,降低了进气温度,同时提高了充气效率。

  结语:作为同级中标杆的1.4TSI发动机,确实拥有众多的过人之处。在经过了这次拆解之后,我们也收获颇丰,通过拆解,以及和厂家工程师的不断交流和沟通,我们也真正深入的了解这款发动机的性能及优势所在。